HAM: Hotspot-Aware Manager for Improving Communications with 3D-Stacked Memory
Published in IEEE Transactions on Computers, 2021
In this article, we propose a novel Hotspot-Aware Manager (HAM) infrastructure for 3D-stacked memory devices capable of optimizing memory access streams via request aggregation, hotspot detection, and in-memory prefetching. We present the HAM design and implementation, and simulate it on a system using RISC-V embedded cores with attached HMC devices. We extensively evaluate HAM with over 12 benchmarks and applications representing diverse irregular memory access patterns. The results show that, on average, HAM reduces redundant requests by 37.51 percent and increases the prefetch buffer hit rate by 4.2 times, compared to a baseline streaming prefetcher. On the selected benchmark set, HAM provides performance gains of 21.81 percent in average (up to 34.28 percent), and power savings of 35.07 percent over a standard 3D-stacked memory.
Recommended citation: Wang, Xi, Antonino Tumeo, John D. Leidel, Jie Li, and Yong Chen. "HAM: Hotspot-Aware Manager for Improving Communications with 3D-Stacked Memory." IEEE Transactions on Computers 70, no. 6 (2021): 833-848. https://artlands.github.io/files/wang-tc-2021.pdf